
Role of Sparse Training and Evolutionary Optimization
in Volatility Forecasting Models

Juan Francisco Muñoz-Elguezabal, Diego F. Arriaza-Alonzo

Instituto Tecnológico y de Estudios Superiores de Occidente,
Departamento de Matemáticas y Fı́sica, Tlaquepaque,

Mexico

{francisco@iteso.mx, diego.arriaza}@iteso.mx

Abstract. ETH is the native cryptocurrency of the Ethereum network, renowned
for its smart contracts and diverse decentralized ecosystem. This research
addresses the challenge of short-term volatility forecasting of ETH/USDT on
a 10-minute interval, leveraging order book data and public trade data from
the previous 30 minutes. Order book data includes buy and sell orders over
time, while public trades refer to executed orders. Features derived from these
data sources are used as model predictors. The first experiment tested the
average past volatility, GARCH(1,1), LSTM, and an Auto-Encoder using a single
training, validation, and test set. The second experiment applied the same models
within a Walk-Forward architecture. The third experiment utilized a Time Fold
Sequential Validation (T-Folds SV) technique, creating 10 folds and omitting 50
minutes between training and validation sets to prevent leakage. By calculating
Kullback-Leibler Divergence, 5 folds were selected that have the characteristics
of being different from each other and provide unique information. As a
consequence, RAM consumption was significantly reduced while maintaining
comparable results to previous experiments. Hyperparameter optimization with
less data is now possible and is performed by Genetic Algorithms. After
three generations of 750 models for both LSTM and Auto-Encoder, the
best hyperparameter values were found, with the optimized LSTM model
outperforming its counterpart. An ablation study as the last experiment was
analyzed by removing the early stopping criteria of the best models, resulting
in worse performance, but not significantly.

Keywords: Ether, order book, public trades, LSTM, auto-encoder, T-Folds SV,
Kullback-Leibler divergence, genetic algorithms.

1 Introduction

Ethereum is a decentralized blockchain that was first introduced in 2013 by Vitalik
Buterin, a computer programmer and researcher in cryptocurrency. It is a network that
acts as the foundation for applications, organizations, communities and digital assets
that anyone can create and utilize. Its main feature is its smart contract functionality,
which is also the main difference between Bitcoin and Ethereum.

73

ISSN 1870-4069

Research in Computing Science 153(12), 2024pp. 73–91; rec. 2024-06-21; acc. 2024-08-17

Fig. 1. One window training-validation-test setup.

Fig. 2. Walk forward setup.

Smart contracts are computer programs that are executed when triggered by a
transaction and act as building blocks for decentralized applications and organizations.
Once a smart contract is published, it will be online and operational until Ethereum
no longer exists. Examples of smart contracts are lending applications, insurance,
decentralized trading exchanges, NFTs, etc. Ether is the native cryptocurrency of
Ethereum. For ETH payments or use of Ethereum applications, a fee in ETH is charged,
which is an incentive for a block producer to perform processing and verifications. Its
main characteristics are that it is secured by cryptography, there is no intermediary
service to make payments (it is peer-to-peer), there is no institution that can decide to
print more ETH, or change the terms of use and it is divisible up to 18 decimal places,
so it is not mandatory to buy 1 whole ETH.

ETH can also be exchanged for other currencies, products and services. The
exchange of ETH with currencies is done on exchange services, where buy and sell
orders are stored on the order book. Buy or bid orders represent an intention to buy
a certain amount of ETH at some specified price while sell or ask orders represent
the opposite. The exchange is done by matching orders by price from the order
book into a trade transaction between buyers and sellers. Orders are one of the key
components to understand the intention of the market as well as their influence on
volatility. The cryptocurrency has gained relevance over the years and today is the
second cryptocurrency with the highest market cap.

Due to its importance on the cryptocurrency market and its role on the Ethereum
network, where at the end of year 2023 there are 96M accounts with ETH, 53.3M smart
contracts, 410B value secured and 4k projects built, understanding and modeling ETH
volatility is crucial for risk management and decision making. Therefore, the purpose
of this work is to predict the short-term n-minutes volatility of ETH/USDT from the
Binance Exchange with Order Book and Public Trades high frequency data. This work
has no intention to produce financial models of volatility or the order book dynamics
itself. The main contributions are to demonstrate the effectiveness and relevance of three
crucial characteristics for Volatility Forecasting:

74

Juan Francisco Muñoz-Elguezabal, Diego F. Arriaza-Alonzo

Research in Computing Science 153(12), 2024 ISSN 1870-4069

Fig. 3. T-folds SV.

The use of Order Books and Public Trades as source of information, the sparse
training using T-Folds SV and KL Divergence for LSTM and Auto-Encoder models and
Genetic Algorithms for Optimization method. The remainder of the paper is structured
as follows. In section 2 an overview of the related work is presented. In section 3
information on how the data was collected and structured is provided as well as how
the features of Order Book and Public Trades were calculated.

Theoretical explanation on how the models are formulated and their main properties
is provided and evaluations metrics are also approached. In section 4details on how
the models were setup in different experiments are given. Finally in section 5 and
section 6 the results of the experiments are reported and discussed and conclusions
on their performance are detailed.

2 Background and Related Work

The volatility estimation is a topic that has been extensively studied and developed over
the years. In the specific case of cryptocurrencies, papers have focused on modeling
BTC volatility using GARCH models. Vivian Naimy and Marianne Hayek compared
the predictive ability of three GARCH models: GARCH (1,1), EWMA, and EGARCH
(1,1). The results indicate that the asymmetric EGARCH (1,1) model outperforms the
symmetric GARCH (1,1) and EWMA models in both in-sample and out-of-sample
contexts. This suggests that BTC behavior differs from traditional currencies [9].

This paper, however, will only focus on GARCH to have a baseline model and it will
be compared to only averaging the past volatility to measure its robustness. BTC will
not be examined because it is the preferred cryptocurrency for analysis and not many
papers focus on others such as Ether. On the survey made by Charandabi and Kamyar
[2], they highlighted two papers.

The first one is the work of Miura, Pichl and Kaizoji called Artificial Neural
Networks for Realized Volatility Prediction in Cryptocurrency Time Series [7], in
which they aggregated RV values using 1-minute-sampled Bitcoin returns over 3-h
intervals to predict future values using ANN (MLP, GRU, LSTM), SVM, and Ridge
Regression and compare their results with Heterogeneous Auto-Regressive Realized
Volatility (HARRV) model with optimized lag parameters.

Ridge Regression was able to outperform all the models. The other highlighted work
was from Jang and Lee, in which they compared the Bayesian neural network with
benchmark models, such as Linear Regression and SVR, on modeling and predicting
the Bitcoin pricing process and concluded that the BNN outperformed the others. [4]
Charandabi and Kaymer also pointed out the need for further research in areas like
implementing data from less volatile cryptocurrencies and exploring new models.

75

Role of Sparse Training and Evolutionary Optimization in ...

Research in Computing Science 153(12), 2024ISSN 1870-4069

Fig. 4. Information leakage. Xt−4, Xt−5 and Xt−k are input variables in the validation set, but
they are the same inputs in the training set represented as X∗

t , X∗
t−1 and X∗

t−k respectively.

As stated above, there have been papers that have worked with Deep Learning
Models to forecast Time Series and Volatility. German Rodikov and Nino
Antulov-Fantulin approached the challenge of predicting volatility by trying the LSTM
model effectiveness against EWMA, HAR-RV, ARIMA, GARCH and GJR-GARCH.
According to their results, LSTM outperformed all models in a rolling window between
5 and 12 periods. [10]. This work will also approach to work with the LSTM model,
so it can be used to forecast 10 periods, specifically 10 minutes and it will also be
compared to the baseline model GARCH.

Jung and Choi in their work called Forecasting Foreign Exchange Volatility Using
Deep Learning Autoencoder-LSTM Techniques [5] predicted the FX volatility with a
hybrid model that combined long short-term memory (LSTM) and autoencoder models,
in which an LSTM model is utilized as an encoder and decoder inside an autoencoder
network. They compared this hybrid model with the traditional LSTM model and based
on their empirical results, the hybrid model outperformed the LSTM model. This work
will also run an Auto-Encoder model similar to work by Jung and Choi because it
will use LSTM layers on both the encoder and decoder and will also compare the
Auto-Encoder model with the LSTM to see if it also outperforms it or not.

Guo, Bifet and Antulov-Fantulin point out that Order Book information
cryptocurrency forecasting is still under-researched. Therefore, their proposal was to
implement a temporal mixture model capable of adaptively exploit both volatility
history and order book features. To forecast the volatility, they used a rolling strategy
and divided the range of data into non-overlapping intervals, with each interval
corresponding to one month. This paper is also contributing to forecast cryptocurrency
volatility using Order Book information by modeling GARCH and LSTM. For training
and validation Guo, Bifet and Antulov-Fantulin used two rolling strategies. The first
one consists of training two months and validate with the immediate next month.

Then the training set moves to the next month as well as the validation set and
the current training set is now taking in consideration the month used by the previous
validation set for training. The second is similar, but instead of rolling both training set
and validation set one month, the training set increase its periods by one month and only
the validation set moves to next month.[3]. Regarding the training and validation of this
paper, a Walk-Forward architecture will be applied as well as an approach similar to
rolling strategy used by the three previous mentioned papers.

76

Juan Francisco Muñoz-Elguezabal, Diego F. Arriaza-Alonzo

Research in Computing Science 153(12), 2024 ISSN 1870-4069

Fig. 5. KL Divergence T-fold SV.

The main difference of the last mentioned approach is that training sets will never be
retrained on previous validation sets and there will be a purge of the observations of the
training set that overlap with the validation set to avoid information leakage, which is
highlighted by Marco Lopez de Prado[6] on his book Advances in Financial Machine
Learning and is applied by Juan Francisco Muñoz and Juan Diego Sanchez on their
poster T-Fold Sequential Validation Technique for Out-Of-Distribution Generalization
with Financial Time Series Data[8].

3 Data and Methods

In this section, it is described how the data was collected and its source of information
as well as calculations of Order Book and Public Trades features, Return and Volatility.
Lastly, a theoretical framework addresses the Kullback-Leibler Divergence and the
method used to optimize the hyperparameters, which is the Genetic Algorithm process.

3.1 Data Collection

There are two sources of information: Order Book Snapshots and Public Trades. Both
were obtained by the website Tardis.dev. For every day, there were about 750-700K
samples for Order Book data and around 500K samples for Public Trades data and both
were from the exchange Binance only. The frequency of order books data was of 100
milliseconds and microseconds for Public Trades. The raw Order Book data provided
the top 25 asks and bid prices as well as the top 25 asks and bids amounts. As for the
raw Public Trades data, it displayed the trade price, the trade amount and the liquidity
taker, which were only two possible values: buy or sell.

3.2 Order Books

The Order Book is a list of buy and sell orders that are waiting to be traded. All the
features of an Order Book can be calculated on different levels (depth of orders) and
can be uses as input variables for volatility modeling. As an example, it is possible to
calculate the Volume Weighted Average Price (VWAP) of the first 5 levels, the first
10 levels or only the first level called Top of the Book (TOB). These are some of the
following features equations:

VWAP =

n∑
i=1

bid pricei × bid volumei +

n∑
i=1

ask pricei × ask volumei

n∑
i=1

bid volumei +

n∑
i=1

ask volumei

, (1)

77

Role of Sparse Training and Evolutionary Optimization in ...

Research in Computing Science 153(12), 2024ISSN 1870-4069

Table 1. Hyperparameter values.

Hyperparameters Values

Epochs [50,100,200]

Learning Rate [0.0001, 0.001, 0.01, 0.05, 0.1]

Batch Sizes [32, 64, 128, 256, 512]

Dropout [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]

Optimizer [RMSprop, SGD, Adam, Nadam, Adadelta]

Loss function [MAE, MSE, HUBER, LOGCOSH]

Layers [1-3]

Unit in Layers [50, 100, 200]

Total Depth =

n∑
i=1

(bid volumei + ask volumei) , (2)

Imbalance =

n∑
i=1

bid volumei
bid volumei + ask volumei

, (3)

Total Spread =

n∑
i=1

Depthi

Total Depth
× (price aski − price bidi) , (4)

Spread Volume =

n∑
i=1

(ask volumei − bid volumei) , (5)

Midprice =
askTOB + bidTOB

2
. (6)

It is important to highlight that the equation 4 was used by Alexander Aidov and
Olesya Lobanova on their research [1] to prove that it exists an inverse relation between
the limit order book depth and spread.

3.3 Public Trades

The information of Public Trades was resampled into a 1 minute timeframe to capture
the information of the prices dynamics during a specific time interval. This allowed to
capture the first price (Open), maximum price (High), minimum price (Low), last price
(Close) and the accumulated volume, which creates a data consolidation that is referred
commonly as OHLCV.

OHLCV Features. Features of differences and relative differences between open,
close, high and low prices are calculated to show the price behavior. Some examples
are Hight - Lowt, Opent - Lowt, Closet - Opent and Hight - Opent. A calculation
of price percentage differences between the current price and the previous price also
provides information on price movements. As an example it is possible to calculate the
percentage difference between the high price and the previous high price.

78

Juan Francisco Muñoz-Elguezabal, Diego F. Arriaza-Alonzo

Research in Computing Science 153(12), 2024 ISSN 1870-4069

Table 2. One window experiment results.
One Window Results

Training Validation Test

R2 MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE

Mean 0 1.18E-07 3.44E-04 1.95E-04 0 9.91E-08 3.15E-04 1.78E-04 -0.0147 8.89E-08 2.98E-04 1.57E-04

GARCH 0.4981 5.93E-08 2.44E-04 1.51E-04 0.3715 6.23E-08 2.50E-04 1.70E-04 0.3536 5.67E-08 2.38E-04 1.73E-04

LSTM 0.9611 4.59E-09 6.78E-05 3.32E-05 0.7878 2.10E-08 1.45E-04 4.63E-05 0.8373 1.43E-08 1.20E-04 5.38E-05

Auto-Encoder 0.9083 1.08E-08 1.04E-04 4.85E-05 0.8655 1.33E-08 1.15E-04 4.33E-05 0.898 8.96E-09 9.47E-05 4.73E-05

The previous mentioned features can also be auto-regressive and take
into consideration the features t-k periods. As an example, it is possible
to obtain {Hight − Lowt}t−k, {Opent − Lowt}t−k, {Closet − Opent}t−k and
{Hight − Opent}t−k for values of k = 1, 2, . . .K with K as proposed memory
parameter. Then it is possible to perform some operations like Simple Moving Average
SMAt, lag LAGt and Standard Deviation SDt. Lastly, for the volume features, buy
volume and sell volume are calculated multiplying the numbers of sides (buy taker or
sell taker) with the volume traded. All these features can be used as input variables
for volatility modeling.

Return, Log Return and Volatility. Return and Log Return are a comparison
between the current price and the previous price:

returnt =
pricet

pricet−1

− 1, (7)

log returnt = log
pricet

pricet−1

. (8)

Volatility is the measure of price fluctuations during a certain time and it is obtained
calculating the standard deviation of returns or log returns. For the purpose of this work,
log returns and 30 periods were selected to calculate the volatility:

Volatilityt=0:30 =

√√√√ 1

30

30∑
i=1

(ri − r̄)
2
. (9)

3.4 Kullback-Leibler Divergence

It is a measure of the difference between two probability distributions. It is commonly
used in information theory and statistics to quantify how much a reference probability
distribution (denoted P) differs from another probability distribution (denoted Q). For
discrete distribution refer to the formula 10 and for continuous distribution refer to the
formula 11:

DKL (P ||Q) =
∑
xϵχ

P (x) log

(
P (x)

Q(x)

)
, (10)

DKL (P ||Q) =

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx. (11)

79

Role of Sparse Training and Evolutionary Optimization in ...

Research in Computing Science 153(12), 2024ISSN 1870-4069

Table 3. Mean walk-forward results.
Mean Walk-Forward Results

Training Validation Test

fold R2 MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE

0 0.0000 8.30E-08 2.88E-04 1.87E-04 -0.6877 5.22E-08 2.28E-04 2.01E-04

-0.0086 8.84E-08 2.97E-04 1.58E-04

1 0.0000 7.23E-08 2.69E-04 1.70E-04 -1.8301 5.60E-08 2.37E-04 2.13E-04

2 0.0000 5.50E-08 2.35E-04 1.52E-04 -0.0725 4.94E-07 7.03E-04 2.51E-04

3 0.0000 1.26E-07 3.54E-04 1.73E-04 -0.0308 1.05E-07 3.25E-04 1.86E-04

4 0.0000 1.25E-07 3.54E-04 1.70E-04 -0.0196 6.14E-08 2.48E-04 1.56E-04

5 0.0000 1.27E-07 3.57E-04 1.75E-04 -0.0405 1.22E-07 3.49E-04 2.00E-04

6 0.0000 1.40E-07 3.74E-04 1.92E-04 -0.0181 4.65E-08 2.16E-04 1.45E-04

7 0.0000 1.42E-07 3.76E-04 1.95E-04 -0.0166 4.95E-08 2.23E-04 1.56E-04

8 0.0000 1.41E-07 3.75E-04 1.94E-04 -0.0202 2.52E-07 5.02E-04 2.09E-04

9 0.0000 1.07E-07 3.28E-04 1.89E-04 -0.0022 7.15E-08 2.67E-04 1.71E-04

The KL Divergence has the property that is non-negative DKL(P ||Q) ≥ 0 and when
DKL(P ||Q) = 0 it means that the distribution of P and Q is the same. Another property
is its asymmetry, which means that DKL(P ||Q)! = DKL(Q||P) For the purpose of this
work it will be used to understand the similarity of the distributions of the volatility
across 10 T-Fold-SV. If one of the folds the distribution shows a large dissimilarity with
another fold distribution, it may indicate that at least one of the folds contains unique
information that the other one does not have. Not necessarily both of them will contain
unique information because of the asymmetry of Kullback-Leiber Divergence.

On the contrary, there will be also cases where the two folds will show a large
similarity, which may indicate that the volatility is behaving with no major changes
between one fold and the other. Consequently, training both folds will not necessarily
feed the model with new information to be trained. On Time Series it is common to
see periods with stability and in contrast, periods with spikes and abrupt changes. The
contrast between both scenarios may have patterns behind that the models can capture
and therefore predict when one of the scenarios is going to happen.

3.5 Genetic Algorithms

They are an optimization method inspired by natural evolution. They create and evolve
a population of possible solutions to a problem. Each solution is represented as an
individual of the population and these individuals evolve through time by crossovers
and mutations. The population is generated randomly or by an heuristic approach and
then each individual is evaluated by a fitness function, which assigns a numeric value
to the individual solution and determines its ability to survive. The best individuals
with higher fitness are more likely to be selected as parents for the creation of children
through genetic operators. These children will represent the next population.

One of the genetic operators involves a crossover between the parents, in which
a probability threshold will determine whether the parents properties are exchanged
between each other or not. The other genetic operator is a mutation in which, through a
probability threshold, one property is exchanged for another property. Over generations,
individuals with higher fitness are more likely to reproduce, thus passing on their
characteristics to subsequent generations.

80

Juan Francisco Muñoz-Elguezabal, Diego F. Arriaza-Alonzo

Research in Computing Science 153(12), 2024 ISSN 1870-4069

Table 4. GARCH walk-forward results.
GARCH Walk-Forward Results

Training Validation Test

fold R2 MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE

0 -20.1258 1.75E-06 1.32E-03 9.42E-04 -0.1457 3.54E-08 1.88E-04 9.63E-05

0.8231 1.55E-08 1.25E-04 7.94E-05

1 -10.4023 8.25E-07 9.08E-04 4.90E-04 -3.7275 9.35E-08 3.06E-04 7.51E-05

2 -7.2526 4.54E-07 6.74E-04 3.54E-04 0.3128 3.16E-07 5.62E-04 2.28E-04

3 0.5201 6.03E-08 2.46E-04 1.31E-04 0.4004 6.13E-08 2.48E-04 1.67E-04

4 0.5463 5.69E-08 2.39E-04 1.22E-04 0.3489 3.92E-08 1.98E-04 1.47E-04

5 0.5145 6.19E-08 2.49E-04 1.37E-04 0.3804 7.26E-08 2.69E-04 1.79E-04

6 0.5475 6.34E-08 2.52E-04 1.39E-04 0.0775 4.22E-08 2.05E-04 1.56E-04

7 0.5986 5.68E-08 2.38E-04 1.24E-04 0.3215 3.31E-08 1.82E-04 1.27E-04

8 0.6564 4.84E-08 2.20E-04 1.00E-04 0.7425 6.37E-08 2.52E-04 1.33E-04

9 0.3936 6.51E-08 2.55E-04 1.06E-04 0.5586 3.15E-08 1.77E-04 1.05E-04

This process of natural selection and reproduction leads to convergence towards
optimal or suboptimal solutions to the problem.

4 Experiments

4.1 One Window Experiment

For a reference on how well other models perform an average of the volatility is
calculated on the training set. For a baseline model GARCH(1,1) with constant mean
and Standardized Skew Student’s t Distribution is proposed. Regarding the Deep
Learning models, the LSTM model is built with one hidden layer of 100 neurons and
regarding the Auto-Encoder structure, one layer of LSTM with 100 neurons are placed
for the Encoder and one layer of LSTM with 100 neurons are placed for the Decoder.

For both models the MSE is the loss function and the metrics are MSE and MAE for
monitoring. The optimizer used for training is Adam, the batch size is 675, the learning
rate is 0.001 and a batch normalization is applied. An early stopping criteria of 30
epochs is applied in case the MAE validation does not improve during convergence. For
this first experiment, a classic architecture of only one Training window of 60 percent
of the dataset, one Validation window of 30 percent of the dataset and one Test window
of 10 percent of the dataset will be configured as it is shown in the Figure 1.

4.2 Walk-forward with Sliding Window Experiment

For this experiment, a classical Training-Validation architecture called Walk-Forward
Validation with a sliding window is applied. It starts with an initial training set of
a fixed number of timesteps and then tests the model on the subsequent fixed-size
validation set. The training set is then shifted forward by the same number of timesteps
as the validation set, and this process continues until the model has been validated on
the final validation set. On the Figure 2 can be found a visual representation of this
training technique. On this experiment LSTM and Auto-Encoder structure setup for
loss function, batch size, metrics and early stopping epoch criteria remain the same as
in the first experiment.

81

Role of Sparse Training and Evolutionary Optimization in ...

Research in Computing Science 153(12), 2024ISSN 1870-4069

Table 5. LSTM walk-forward results.
LSTM Walk-Forward Results

Training Validation Test

fold R2 MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE

0 0.8530 1.28E-08 1.13E-04 6.87E-05 0.7891 4.96E-09 7.04E-05 4.69E-05

0.8661 1.18E-08 1.08E-04 4.37E-05

1 0.8484 1.13E-08 1.06E-04 6.31E-05 0.7349 4.03E-09 6.35E-05 4.80E-05

2 0.8346 8.62E-09 9.29E-05 5.74E-05 0.9368 2.89E-08 1.70E-04 5.19E-05

3 0.9032 1.17E-08 1.08E-04 5.53E-05 0.8985 9.32E-09 9.66E-05 3.54E-05

4 0.9049 1.12E-08 1.06E-04 4.88E-05 0.9301 3.81E-09 6.17E-05 3.25E-05

5 0.9170 9.86E-09 9.93E-05 4.45E-05 0.8911 1.23E-08 1.11E-04 4.19E-05

6 0.9215 1.04E-08 1.02E-04 4.29E-05 0.9266 3.13E-09 5.60E-05 3.16E-05

7 0.9243 1.02E-08 1.01E-04 4.04E-05 0.9062 4.50E-09 6.71E-05 3.17E-05

8 0.9246 1.02E-08 1.01E-04 3.77E-05 0.5539 5.58E-08 2.36E-04 5.52E-05

9 0.8202 1.48E-08 1.22E-04 3.84E-05 0.8773 8.06E-09 8.98E-05 3.90E-05

The main differences are the input sequence and the learning rate. Feature selection
is applied, in which 156 from 207 feature variables are removed. The reason behind
this action was because RAM memory was not sufficient and many input variables
were correlated between each other. Therefore, the dimension of the input sequence
will be impacted. Regarding the learning rate, it will be an initial value of 0.001 that
will decay exponentially with a factor of 0.96 every 1000 steps. Regarding the GARCH
model, its structure remains the same and as for the Mean exercise model, one mean
will be calculated for each training window. For Test Set, the models will be trained on a
Training Set that includes the last Validation Set to keep emulating the sliding window.

4.3 T-Fold SV Experiment

For this experiment, only LSTM and Auto-Encoder models will be conducted because
they are the most time-consuming and resource-intensive. They will maintain the same
criteria for their setup that was used on the Walk-Forward Experiment. Both also have
many hyperparameters that need to be optimized and therefore, many models need to be
run to find the best values. This process can be lengthy if the resources are limited and if
the time required for a model to be trained takes a lot. GARCH will not be evaluated on
this experiment due to the lack of hyperparameters compared to the previous mentioned
models and its poor performance on its results obtained in the One-Window Experiment
and Walk-Forward Experiment, as shown in tables 2 and 4 respectively.

For the case of the Mean exercise model, it is not required to optimize
hyperparameters and was only used as reference for the previous experiments.
LSTM and Auto-Encoder structure setup for loss function, batch size, metrics and
early stopping epoch criteria remain the same as in the Walk-Forward experiment.
exponentially with a factor of 0.96 every 1000 steps. It is important to highlight that
information leakage between training set and validation set occurs when the last is
immediately after the first and this is due to the serial correlation of Xt ≈ Xt+1 and
Yt ≈ Yt+1 [6]. To address this issue, 50 minutes were omitted between the training set
and the validation set, as well as for the validation set and the next training set. The
criteria to choose 50 minutes was because the input sequence models is 30 minutes and
the output sequence was 10 minutes.

82

Juan Francisco Muñoz-Elguezabal, Diego F. Arriaza-Alonzo

Research in Computing Science 153(12), 2024 ISSN 1870-4069

Table 6. Auto-encoder walk-forward results.
Auto-Encoder Walk-Forward Results

Training Validation Test

fold R2 MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE

0 0.8545 9.63E-09 9.81E-05 5.08E-05 0.8149 3.84E-09 6.20E-05 3.19E-05

0.8858 1.00E-08 1.00E-04 4.95E-05

1 0.8511 8.49E-09 9.21E-05 4.46E-05 0.8706 1.59E-09 3.99E-05 2.57E-05

2 0.8539 5.88E-09 7.67E-05 3.82E-05 0.9317 2.81E-08 1.67E-04 5.60E-05

3 0.9094 9.56E-09 9.78E-05 4.00E-05 0.8917 1.05E-08 1.03E-04 4.52E-05

4 0.9103 9.83E-09 9.92E-05 3.85E-05 0.9004 5.36E-09 7.32E-05 4.17E-05

5 0.9184 9.19E-09 9.59E-05 3.87E-05 0.8495 1.42E-08 1.19E-04 4.96E-05

6 0.9157 1.04E-08 1.02E-04 4.15E-05 0.8519 5.99E-09 7.74E-05 4.27E-05

7 0.9126 1.09E-08 1.05E-04 4.35E-05 0.8782 4.87E-09 6.98E-05 3.70E-05

8 0.9082 1.14E-08 1.07E-04 4.50E-05 0.8260 3.28E-08 1.81E-04 5.61E-05

9 0.8601 1.24E-08 1.11E-04 4.59E-05 0.8353 1.06E-08 1.03E-04 4.83E-05

With 50 minutes it is safe to determine that there will not be any leakage, although
the purge of minutes should be at least 41 minutes. For this case more minutes were
added for some slack. As it is mentioned in subsection 3.3, there are also auto-regressive
features calculated from Public Trades features, which may cause that they are used in
both the Training set and the Validation set. A representation of this information leakage
problem can be found in the Figure 4.

Juan Francisco Muñoz and Juan Diego Sánchez addresses on their poster called
T-Fold Sequential Validation Technique for Out-Of-Distribution Generalization with
Financial Time Series Data the complexities of using cross-validation for financial
time series data, which possess temporal structures that violate the assumption of
independence and identical distribution inherent in traditional CV methods.

Their proposed method called Time Fold Sequential Validation Technique (T-Fold
SV) mitigates the issues of information leakage and the masking of non-deterministic
relationships between features and target variables by decomposing the global
probability distribution into local distributions. This allows for identifying each
sample’s contribution to the learning process and maintaining information sparsity. By
controlling these factors, the method relaxes the stringent i.i.d. assumption, thereby
enhancing the parametric stability and accuracy of predictive models. [8].

For this experiment the T-Fold SV is used to divide validation sets and training
sets into 10 T-Folds SV. This paper does not pretend to deep dive on the technique,
it only limits to its usage as tool. The Figure 3 illustrates how the T-Folds SV were
split showing that Training sets never used Validation sets for training. This is a key
difference from the Walk-Forward technique used in the experiment of subsection 4.2.
Ensuring that Training sets are never used in Validation sets reinforces the avoidance
of information leakage.

To make the training process more efficient, KL Divergence is applied to the 10
T-Folds SV of volatility to select only the folds that were above of a divergence
threshold. This also part of the technique of T-Folds SV. An information matrix 12
was developed containing each of the KL Divergence of the 10 volatility distributions
and the logic behind is to train only folds that provide unique information with the
expectation of achieving similar or better results than training the whole dataset.

83

Role of Sparse Training and Evolutionary Optimization in ...

Research in Computing Science 153(12), 2024ISSN 1870-4069

Table 7. LSTM T-Fold SV results.
LSTM T-Fold SV Results

Training Validation Test

fold R2 MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE

0 0.69018 1.67E-08 1.29E-04 9.55E-05 0.5204 5.90E-08 2.43E-04 1.38E-04

0.8344 1.45E-08 1.21E-04 5.24E-05

3 0.14589 1.65E-08 1.28E-04 9.85E-05 0.5084 1.02E-08 1.01E-04 7.71E-05

4 0.1805 1.25E-08 1.12E-04 9.55E-05 0.2762 1.54E-08 1.24E-04 9.99E-05

5 0.95844 1.28E-08 1.13E-04 5.49E-05 0.9433 3.40E-09 5.83E-05 3.25E-05

8 0.90746 3.99E-09 6.31E-05 3.56E-05 0.8336 8.54E-09 9.24E-05 5.39E-05

DKL(1, 1) DKL(1, 2) . . . DKL(1, 10)

DKL(2, 1) · · · · · ·
...

...
. . .

...
...

. . .
...

DKL(10, 1) · · · · · · DKL(10, 10)

. (12)

The threshold to determine whether a distribution was not similar to another
distribution was > 1. After this calculation the folds 1, 3, 4, 5 and 8 were the only folds
selected for Training. 3,4 and 5 were the distributions with higher dissimilarity among
other distributions. 0 and 8 folds have less dissimilarity among others distributions, but
were also chosen to also consider folds from the beginning and from the end of the time
series. The illustration of the final folds can be referred to the Figure 5.

4.4 Evolutionary Algorithms with T-Fold SV Experiment

In this experiment the hyperparameters to be evaluated on the Genetic Algorithms
are shown in Table 1. Both LSTM and Auto-Encoder will follow the same Genetic
Algorithm setup. The phases are the following: First population, parent selection,
cross-over, mutation, and new population generation.

– First Population: Hyperparameters for each model will be randomly selected using
uniform probability. There will be a total of 750 models evaluated using MSE metric.

– Parameter Selection: After evaluating all 750 models, parents are selected based on
their results. Selection is weighted according to model performance, favoring models
with better results.

– Cross-Over: In each iteration, two parents are randomly selected. They exchange
hyperparameters to generate new children. If a random number is below the threshold
of 0.9, then the exchange happens, otherwise, the children will be the same as the
parents. The number of exchanged hyperparameters is also randomized1.

– Mutation: It occurs if a random number is below a threshold of 0.1. If triggered, a
hyperparameter value is randomly exchanged within its range.

84

Juan Francisco Muñoz-Elguezabal, Diego F. Arriaza-Alonzo

Research in Computing Science 153(12), 2024 ISSN 1870-4069

Table 8. Auto-encoder T-Fold SV results.
Auto-Encoder T-Fold SV Results

Training Validation Test

fold R2 MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE

0 0.7848 1.18E-08 1.09E-04 7.05E-05 0.8533 3.64E-08 1.91E-04 1.02E-04

0.8730 1.12E-08 1.06E-04 5.24E-05

3 0.7491 6.29E-09 7.93E-05 3.44E-05 0.804 5.39E-09 7.34E-05 3.94E-05

4 0.879 1.66E-09 4.08E-05 2.54E-05 0.9116 2.73E-09 5.22E-05 2.81E-05

5 0.8593 4.71E-08 2.17E-05 6.16E-05 0.929 3.27E-09 5.72E-05 3.41E-05

8 0.8971 3.91E-09 6.25E-05 3.67E-05 0.8673 6.96E-09 8.34E-05 4.88E-05

Table 9. Computational resources results.

Computational Resources

Experiment Model RAM RAM GPU Run Time

One-Window
LSTM 11.8 GB 4.1 GB 5:36 min

Auto-Encoder 14.2 GB 4.1 GB 4:02 min

Walk-Forward
LSTM 14.5 GB 2.1 GB 12:48 min

Auto-Encoder 15.3 GB 2.1 GB 34:03 min

T-Fold SV
LSTM 5.4 GB 0.6 GB 1.59 min

Auto-Encoder 5.4 GB 0.6 GB 3.04 min

– New Population: These processes are iterated until the desired number of models
for the next population is generated. Three populations of 750 individuals each
will be created.

4.5 Ablation Studies

In this work it is also investigated the effects of removing early stopping for LSTM and
Auto-Encoder models. This criteria is implemented to stop running iterations during
Training when Validation results stop improving or start getting worse. This removal
will be applied on the models with their optimized hyperparameters.

5 Results

5.1 Evolutionary Algorithms with T-Fold SV Results

On this subsection the tables with the top 10 best results of the third generation will
be displayed and then the results of the final model for both LSTM and Auto-Encoder
will be shown. Results of the tables with the 10 bests results are scaled and use MSE
as error metric and the results of the final models with the optimal hyperparameters
are with their original scale. The results of the LSTM of the third generation can be
referred to the table 10. Given the results, the final model will run with 100 epochs,
although it is not clear, which value is the optimal value. As for the batch size 64 will
be the chosen value.

85

Role of Sparse Training and Evolutionary Optimization in ...

Research in Computing Science 153(12), 2024ISSN 1870-4069

Table 10. LSTM top 10 third generation results.

Epochs Batch Lr Rate Dropout Optimizer Loss No. Layers Units by Layer Results
100 64 0.01 0.5 nadam mae 1 [200, 0, 0] 6.16E-05

50 64 0.01 0.4 nadam mae 1 [50, 0, 0] 6.38E-05

150 32 0.01 0.4 nadam logcosh 1 [200, 0, 0] 6.39E-05

100 128 0.01 0.7 nadam mae 1 [200, 0, 0] 6.44E-05

100 32 0.01 0.2 nadam mae 1 [200, 0, 0] 6.47E-05

150 64 0.05 0.1 nadam mae 1 [200, 0, 0] 6.56E-05

150 128 0.01 0.6 adam mae 1 [200, 0, 0] 6.59E-05

150 64 0.01 0.7 nadam mae 1 [50, 0, 0] 6.90E-05

100 64 0.01 0.7 adam logcosh 1 [200, 0, 0] 7.29E-05

100 64 0.01 0.4 nadam mae 1 [50, 0, 0] 7.49E-05

Table 11. LSTM with hyperparameter optimization results.
LSTM with Hyperparameter Optimization Results

Training Validation Test

fold R2 MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE

0 0.9279 5.66E-09 7.53E-05 4.77E-05 0.958 1.17E-08 1.08E-04 5.75E-05

0.9176 7.24E-09 8.51E-05 3.28E-05

3 0.8084 5.52E-09 7.43E-05 3.43E-05 0.8476 4.64E-09 6.81E-05 3.54E-05

4 0.9023 1.54E-09 3.93E-05 2.81E-05 0.9147 2.62E-09 5.12E-05 3.08E-05

5 0.8373 7.07E-08 2.67E-04 5.06E-05 0.9592 2.24E-09 4.74E-05 2.50E-05

8 0.9276 2.99E-09 5.47E-05 2.62E-05 0.8892 5.77E-09 7.60E-05 3.80E-05

With respect of the number of layers and units, 1 layer and 200 units are sufficient.
For the other hyperparameters, the final values will be 0.01 for the Learning Rate, mae
for the Loss Function, 0.5 for the Dropout Value and nadam for the Optimizer. The
value for Dropout could be another value, thus it is not clear which one is the optimal.
The results of the models of the third generation for Auto-Encoder can be referred to
the table 12. Given the results, the final model will run with 150 epochs, although it is
not clear whether it should be 100 or 150.

Due to the fact that there is an early stopper for epochs, there is no need to try both
of them. Values of 64 and 128 will be chosen for the batch size. The final results will
only show the value with the best results. With respect of the number of layers, 1 layer
is sufficient and the units assigned to both Encoder and Decoder will be 200. For the
other hyperparameters, the final values will be 0.0001 for the Learning Rate, 0.4 for the
Dropout Value and Adam for the Optimizer. For the case of loss function, there is no a
clear criteria for which one is the best, therefore all of them were chosen and similar to
the batch size, the final results will only show the value with the best result. Finally, the
best model for loss function and batch size were MAE and 64 respectively.

5.2 Ablation Study Results

5.3 Results Interpretation

In the One-Window experiment, the baseline GARCH model, when compared to Deep
Learning models, fails to predict volatility accurately. This is evident from its higher
MSE, RMSE, and MAE values across all windows.

86

Juan Francisco Muñoz-Elguezabal, Diego F. Arriaza-Alonzo

Research in Computing Science 153(12), 2024 ISSN 1870-4069

Table 12. Auto-encoder top 10 third generation results.

Epochs Batch Lr Rate Dropout Optimizer Loss Encoder
Layers

Encoder
Units

Decoder
Layers

Decoder
Units Results

150 128 0.0001 0.4 adam logcosh 1 [50, 0, 0] 1 [200, 0, 0] 7.35E-05

100 64 0.0001 0.4 adam huber 1 [200, 0, 0] 1 [200, 0, 0] 7.46E-05

150 64 0.0001 0.6 adam mse 1 [100, 0, 0] 2 [200, 200, 0] 7.56E-05

100 128 0.0001 0.6 adam logcosh 1 [50, 0, 0] 1 [200, 0, 0] 7.58E-05

150 32 0.0001 0.4 nadam huber 1 [200, 0, 0] 1 [200, 0, 0] 7.69E-05

150 64 0.0001 0.5 nadam huber 1 [200, 0, 0] 3 [100, 100, 100] 7.71E-05

100 256 0.001 0.7 adam mse 1 [200, 0, 0] 1 [200, 0, 0] 7.74E-05

150 32 0.0001 0.3 adam mse 1 [200, 0, 0] 1 [200, 0, 0] 7.77E-05

100 128 0.001 0.4 nadam mae 1 [50, 0, 0] 1 [200, 0, 0] 7.79E-05

100 32 0.0001 0.1 nadam logcosh 2 [200, 200, 0] 1 [200, 0, 0] 7.83E-05

However, GARCH outperforms the Mean Exercise in all metrics and sets, except
for MAE in the Test Set, indicating that classic models can provide some insights
into volatility changes over time but still lag behind more sophisticated models. Deep
Learning models exhibit lower errors on metrics such as MAE and RMSE, proving
their robustness to outliers while maintaining overall low error values. An important
highlight is the significant difference of the Auto-Encoder over LSTM on error metrics
results as evidenced in table 2. For example, the Auto-Encoder outperforms LSTM by
5.34E-09 on MSE and 0.65E-05 on MAE in the test results.

Both LSTM and Auto-Encoder consumed 13.8GB and 14.2GB of RAM system
respectively as well as 4.2 GB GPU RAM. In the Walk-Forward experiment it is
noticeable on GARCH Results in table 4 that although on Test set shows a significant
improvement compared to the One-Window Training, it does not show consistency
among Validation Folds, which is an indicator that this baseline model is not the optimal
model for volatility forecasting.

Compared to the folds of the Mean Exercise that are found in table 3, GARCH
folds results outperforms them almost all on Training, Validation and Test sets, with
the exception of the MAE results on the first three fold of the Training Set, which were
also the folds with the worst results for the GARCH model. These results reinforces the
idea of the previous paragraph that classic models are able to provide some information
about how volatility changes over time. Regarding the Deep Learning models, results in
tables 5 and 6 show that both models have consistency among their folds on all metrics
and on all sets, suggesting robustness and high accuracy in volatility prediction. Only
LSTM on its fold 8 shows inconsistency and a bad performance on the Validation set.

Regarding the Test set, LSTM improves its results compared to the first experiment
and Auto-Encoder results decline slightly but not significantly. For the T-Fold-SV
experiment LSTM results were mixed. The folds 0 and 5 had a good performance
contrary to the folds 3, 4 and 8. Test Results were very similar to the One-Window
experiment, specifically, the differences in MSE and MAE were 0.02E-08 and
0.14E-05, respectively. The memory usage and Test results made this experiment
eligible for hyperparameter optimization. The results with the original scale for
Training, Validation and Test can be found in the table 7. The Auto-Encoder
outperforms significantly the LSTM model in this experiment.

87

Role of Sparse Training and Evolutionary Optimization in ...

Research in Computing Science 153(12), 2024ISSN 1870-4069

Table 13. Auto-encoder with hyperparameter optimization results.

Auto-Encoder with Hyperparameter Optimization Results

Training Validation Test

fold R2 MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE

0 0.8567 1.20E-08 1.09E-04 7.03E-05 0.9269 2.12E-08 1.46E-04 8.09E-05

0.9043 8.41E-09 9.17E-05 4.58E-05

3 0.7519 6.36E-09 7.98E-05 3.44E-05 0.7921 7.51E-09 8.67E-05 4.34E-05

4 0.8735 1.70E-09 4.12E-05 2.57E-05 0.8785 3.74E-09 6.12E-05 2.99E-05

5 0.8902 3.78E-08 1.95E-04 5.37E-05 0.9499 2.53E-09 5.03E-05 3.14E-05

8 0.8912 4.01E-09 6.33E-05 3.43E-05 0.8396 8.07E-09 8.99E-05 5.18E-05

Table 14. LSTM ablation study results.

LSTM Ablation Study Results

Training Validation Test

fold R2 MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE

0 0.8240 9.37E-09 9.68E-05 5.8E-05 0.8479 2.53E-08 1.59E-04 7.26E-05

0.8801 1.05E-08 1.03E-04 4.55E-05

3 0.4219 2.08E-08 1.44E-04 4.5E-05 0.8069 4.34E-09 6.59E-05 3.34E-05

4 0.8594 2.44E-09 4.94E-05 2.58E-05 0.5947 1.11E-08 1.05E-04 4.36E-05

5 0.7301 7.77E-08 2.79E-04 5.9E-05 0.9428 3.17E-09 5.63E-05 2.95E-05

8 0.9773 9.69E-10 3.11E-05 1.6E-05 0.7769 1.20E-08 1.09E-04 5.3E-05

It is able to obtain consistent results among all the T-Folds-SV, which also made it
a candidate for Hyperparameter optimization, supporting the hypothesis that selected
T-Folds-SV were appropriate and that the model remains robust and effective for the
research problem. The results with the original scale for Training, Validation and Test
can be found on table 8. The highlight of this experiment was their results on RAM
consumption that were significant reduced compared to the previous experiments. There
was a consumption of 5.4 GB for RAM System and 0.6 GB for GPU RAM for both
models. For a comparison between experiments refer to the table 9.

The RAM usage for the Auto-Encoder was reduced to approximately one-third
of the previous experiments usage, and the RAM usage for the LSTM was reduced
to slightly more than half compared to the One-Window Experiment and to almost
one-third compared to the Walk-Forward Experiment. For GPU RAM, both models
reduced usage by nearly six times compared to the One-Window Experiment and by
nearly four times compared to the Walk-Forward Experiment. Lastly, regarding the
runtime, although the Walk-Forward experiment is a classic architecture for time series
validation, it is computationally expensive and takes the most time for a single iteration.
LSTM needed 12:48 min and Auto-Encoder 34:03 min for one single run.

T-Fold-SV experiment, on the contrary, manages to be the least time-consuming for
both models. More generations are needed for the Evolutionary Algorithms with T-Fold
SV experiment to achieve better parametric stability for hyperparameters on both LSTM
and Auto-Encoder models, especially the last one. For the LSTM model, for example,
table 10 shows no clear best values for Dropout and Epochs. However, with the selected
optimal values, LSTM shows significant improvement over the previous experiments.
Th results in table 11 for Validation sets are better than the results from the results of
T-Folds SV with no hyperparameter optimization found in table 7.

88

Juan Francisco Muñoz-Elguezabal, Diego F. Arriaza-Alonzo

Research in Computing Science 153(12), 2024 ISSN 1870-4069

Table 15. Auto-encoder ablation study results.

Auto-Encoder Ablation Study Results

Training Validation Test

fold R2 MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE

0 0.8460 1.57E-08 1.25E-04 8.88E-05 0.9250 2.04E-08 1.43E-04 8.96E-05

0.8976 9.00E-09 9.49E-05 4.63E-05

3 0.8119 7.13E-09 8.44E-05 3.97E-05 0.8497 5.87E-09 7.66E-05 4.30E-05

4 0.8911 2.65E-09 5.15E-05 3.13E-05 0.8721 3.06E-09 5.53E-05 3.04E-05

5 0.8306 5.46E-08 2.34E-04 6.53E-05 0.9559 2.50E-09 5.00E-05 2.92E-05

8 0.8662 4.71E-09 6.86E-05 3.53E-05 0.8606 7.82E-09 8.84E-05 4.99E-05

As an example, the fold 4 shows an RMSE improvement of 7E-05. Test set
results also surpass those from previous experiments, with an MSE of 7.24E-09
compared to 1.45E-08 from the T-Fold SV with no hyperparameter optimization
experiment, 1.18E-08 from Walk-Forward experiment and 1.43E-08 obtained on the
One-Window experiment. For the Auto-Encoder, more generations are needed to
stabilize hyperparameters due probably to the model’s complexity. As shown in table
12, there are no clear optimal values for loss function, batch size and epochs. The
criteria stated on subsection 5.1 was needed to determine their best values.

The results for Auto-Encoder are shown in table 13 and they showed an
improvement over the T-Fold SV experiment with no hyperparameter optimization in
Validations sets on all metrics. The MAE result on fold 4 was the only exception, with a
result of 3.08E-05 compared to a result of 2.81E-05 obtained from the T-Fold SV with
no hyperparameter optimization experiment.

In the Test Set, the final model surpasses its previous experiments with an MSE
of 8.41E-09 compared to 1.12E-08 from the T-Fold SV with no hyperparameter
optimization experiment, 1.00E-08 from Walk-Forward experiment and 8.96E-09
obtained on the One-Window experiment. Notably, LSTM’s top 10 results in Table
10 are better than the Auto-Encoder’s, ranging from 6.16E-05 to 7.49E-05 compared
to 7.35E-05 to 7.83E-05, indicating that with the right hyperparameters, LSTM can
outperform more complex models.

This statement is reinforced by the fact that the Test results from the best models of
LSTM and Auto-Encoder showed that the first outperforms the other with a MSE result
of 7.24E-09 compared to the result of 8.41E-09. Both models benefit from MAE as
the loss function, balancing prediction errors and aiding convergence, while Adam and
Nadam optimizers are preferred for their fast convergence and adaptive learning rates.
SGD and Adadelta may struggle to converge and require more epochs, but generally,
epochs beyond 150 are unnecessary for convergence.

Regarding the Ablation Study, it shows that disabling early stopping leads to a
reduction in almost all performance metrics, both on training and validation sets for
both models. We can interpret this decreased performance as a sign of the positive
effect on adding early stopping criteria, which had 30 epochs of patience until stale
results in the cost function triggers a stop-and-reload of the previous weights, and more
importantly, the benefit of an information-based criteria to select the training datasets
in order to perform Out-of-distribution generalization.

89

Role of Sparse Training and Evolutionary Optimization in ...

Research in Computing Science 153(12), 2024ISSN 1870-4069

Nevertheless, to not add early stopping criteria did not strongly diminished the
benefits of all the previous considerations on this modeling framework, because,
on average, the difference in the performance metrics was negligible, as shown in
tables 14 and 15.

6 Conclusions and Future Work

On this work it was first analyzed if a baseline model such as GARCH was able
to forecast volatility and obtain significant differences compared to average the past
volatility and use that mean value for future volatility timesteps and the results on both
One Window Training and Walk-Forward experiments showed that GARCH indeed is
able to outperform the Mean Exercise, but not significant, which indicates that more
sophisticated models such as Deep Learning Models are required and therefore, LSTM
and Auto-Encoder are proposed.

This research presented the obstacle that both face regarding their consumption of
RAM and GPU RAM memory, which makes them hard to implement on large datasets
and also hard to optimize. In order to deal with that issue, the T-Fold SV proposal to split
the data, select unique features and then calculate Kullback-Leibler Divergence to select
the sets that may provide unique information was applied on the dataset. This process
helped to reduce significantly the consumption of RAM and GPU RAM memory and
was also able to get similar results in comparison to training the whole dataset.

For hyperparameter optimization, the Genetic Algorithm focused on the values of
Epochs, Batch Size, Learning Rate, Loss Function, Optimizer, Layers and Number of
Units. After three generations it was clear for most of the values of the LSTM Model
which hyperparameter values to use, but for Auto-Decoder was not clear enough for
some of its values, which may be an indication that for more complex models, more
generations are required. With the optimized hyperparameter values, LSTM managed
to outperformed the Auto-Encoder and showed a significant improvement compared to
its previous experiments.

Both models have also the property that performed better with MAE loss function,
which is an indication that MSE may overpenalize volatility spikes. As for the
optimizers, both models showed good performance with Adam and Nadam, which leads
to conclude that a strong capability for adaptive learning and momentum are required
for a better performance. Lastly, an Ablation study was perform removing the early
stopping criteria on both best models for LSTM and Auto-Encoder and the results
showed that there indeed a negative impact on the results, but not significant.

Future Works may incorporate new models and new input variables as well as
compare results on different time frequencies, different cryptocurrencies and different
financial markets. To deep dive on time frequencies, it has been proved on this work
it is possible to forecast intraday volatility, therefore it is necessary to research more
on what works on high frequency volatility. Regarding the input variables, Onchain
Data, Twitter or News may also bring relevant information that strengthen the models
capabilities. On cryptocurrencies, most of the researches have focused on BTC and
there are other major cryptocurrencies that are under-researched including Ether.

90

Juan Francisco Muñoz-Elguezabal, Diego F. Arriaza-Alonzo

Research in Computing Science 153(12), 2024 ISSN 1870-4069

With more resources, it could be possible to try running more generations of models
and also including other hyperparameters. It will also be interesting to test Adam and
Nadams own hyperparameters because they were the best performing optimizers for
both models and were only tested with their default hyperparameters. A more in-depth
analysis of the impact of different hyperparameters and their interactions could provide
a comprehensive understanding of the models robustness and more ablation studies
could be conducted. Lastly, regarding the T-Folds SV, more exploration is required to
exploit its potential to Time Series Problems Applications. One of them could be to
label distributions and train specific models for each distribution instead of one model
for all the distributions and for an unseen distribution use one of the models that were
trained that fits the most.

References

1. Aidov, A., Lobanova, O.: The relation between intraday limit order book depth and spread.
International Journal of Financial Studies 9(60), 1–13 (2021)

2. Charandabi, S., Kamyar, K.: Survey of cryptocurrency volatility prediction literature using
artificial neural networks. Business and Economic Research 12(1), 17–27 (2022)

3. Guo, T., Bifet, A., Antulov-Fantulin, N.: Bitcoin volatility forecasting with a glimpse into
buy and sell orders. IEEE International Conference on Data Mining pp. 989–994 (2018)

4. Jang, H., Jaewook, L.: An empirical study on modeling and prediction of bitcoin prices
with bayesian neural networks based on blockchain information. IEEE Access 6, 5427–5437
(2018)

5. Jung, G., Choi, S.Y.: Forecasting foreign exchange volatility using deep learning
autoencoder-LSTM techniques. Complexity 2021, 16 (2021)

6. Lopez-de-Prado, M.: Advances in financial machine learning. Wiley (2018)
7. Miura, R., Pichl, L., Kaizoji, T.: Artificial neural networks for realized volatility prediction

in cryptocurrency time series. Advances in Neural Networks 11554, 165–172 (2019)
8. Muñoz-Elguezábal, J., Sánchez Torres, J.D.: T-fold sequential validation technique for

out-of-distribution generalization with financial time series data. In: Proceedings of the 4th
International Conference on Econometrics and Statistics (2021)

9. Naimy, V.Y., Hayek, M.R.: Modelling and predicting the bitcoin volatility using garch
models. International Journal of Mathematical Modelling and Numerical Optimisation 8(3),
197–215 (2018)

10. Rodikov, G., Antulov-Fantulin, N.: Can LSTM outperform volatility-econometric models?
(2022)

91

Role of Sparse Training and Evolutionary Optimization in ...

Research in Computing Science 153(12), 2024ISSN 1870-4069

	Role of Sparse Training and Evolutionary Optimization in Volatility Forecasting Models

